Search results for "posttranscriptional regulation"
showing 3 items of 3 documents
The 5′ Untranslated Region of the EFG1 Transcript Promotes Its Translation To Regulate Hyphal Morphogenesis in Candida albicans
2018
ABSTRACTExtensive 5’ untranslated regions (UTR) are a hallmark of transcripts determining hyphal morphogenesis inCandida albicans.The major transcripts of theEFG1gene, which are responsible for cellular morphogenesis and metabolism, contain a 5’ UTR of up to 1170 nt. Deletion analyses of the 5’ UTR revealed a 218 nt sequence that is required for production of the Efg1 protein and its functions in filamentation, without lowering the level and integrity of theEFG1transcript. Polysomal analyses revealed that the 218 nt 5’ UTR sequence is required for efficient translation of the Efg1 protein. Replacement of theEFG1ORF by the heterologous reporter geneCaCBGlucconfirmed the positive regulatory i…
The role of post-transcriptional modulators of metalloproteins in response to metal deficiencies
2021
Copper and iron proteins play a wide range of functions in living organisms. Metal assembly into metalloproteins is a complex process, where mismetalation is detrimental and energy-consuming to cells. Under metal deficiency, metal distribution is expected to reach a metalation ranking, prioritizing essential versus dispensable metalloproteins, while avoiding interferences with other metals and protecting metal-sensitive processes. In this review, we propose that posttranscriptional Modulators of Metalloprotein messenger RNA (ModMeR) are good candidates in metal prioritization under metal-limited conditions. ModMeR target high quota or redundant metalloproteins and, by adjusting their synthe…
The 5' Untranslated Region of the
2018
Many of the virulence traits that make Candida albicans an important human fungal pathogen are regulated on a transcriptional level. Here, we report an important regulatory contribution of translation, which is exerted by the extensive 5′ untranslated regulatory sequence (5′ UTR) of the transcript for the protein Efg1, which determines growth, metabolism, and filamentation in the fungus. The presence of the 5′ UTR is required for efficient translation of Efg1, to promote filamentation. Because transcripts for many relevant regulators contain extensive 5′ UTR sequences, it appears that the virulence of C. albicans depends on the combination of transcriptional and translational regulatory mec…